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Abstract We incorporate a stochastic element, in various ways, into the theory of choice under
uncertainty, in the context of pairwise choice problems. By splitting the decision-making process into
three distinct stages, it is demonstrated that there are three alternative approaches to incorporating the
stochastic element. These are (1} the Random Preference model [Loomes and Sugden, 1997]; (2} The
Hey-Orme Model [Hey and Onme, 19941; and (3) the Harless-Camerer Model [Harless and Camerer,
1994]. We estimate various combinations of the three models by maximum likelihood using
experimental data from a sample of 92 subjects who were each presented with 90 pairwise choice
problems. A core theory of simple expected utility (EU) is considered first, As 2 generalisation of
EU, we then adopt “Rank Dependent” Expected Utility theory [Quiggin, 1982] as the core theory and
we sce a significant improvement in explanatory power over simple EU. An obvious feature of the
data is that subjects’ choices tend to change in particular ways over time, and these important effects
are captured by allowing certain key parameters to decay over time. It is thus established that
observed choices correspond more closely to simple EU, the more accusiomed subjects become to

solving pairwise choice problems.

1. Introduction

The mainstream decision theory literature has
tended to revolve around deterministic models
which make no explicit allowance for any
stochastic element in people’s decision
behaviour. However, it has frequently been
observed that when a participant in a decision
experiment is presented with exactly the same
problem twice in the course of an experiment,
sthe often responds differently on each of the
1wo occasions. Given the prevalence of such
“reversals”, and the desire to conduct soundly-
based statistical tests to discriminate between
competing models, there is a clear need to
incorporate  an  appropriate  stochastic
specification into modern decision theory,

Rasic notation is established in section 2.
Section 3 then sets out the various stochastic
versions of EU and describes how each can be
econometrically estimated. We also show how
we have allowed for any “experience” effect to
be picked up. Section 4 introduces Rank
Dependent  Expected  Uility  Theory
{henceforth RD) as an alternative core theory
and shows how iis parameters can be
estimated. Section 5 describes the data used
in estimation. Section 6 reporis and discusses
the results. Section 7 concludes.

2. Basic notation
Participants in the experiment were presented
with a series of choices between pairs of

lotteries which involved no more than three
possible payoffs. To formalise this, we specify
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a payoff vector x = {xg X1 Xz} where the x’s
are amounts of money, with x; > x; > % = 0.
We also specify two probability vectors p = {po
pi po) and g = (Qo G Q) whose elements
correspond to the elements of the payoff
vector, If the choice does not involve
dominance, p can be described as the “riskier”
option, and g as the “safer” option. As a
consequence, for non-dominance questions, it
is always the case that pp > gp , pr < g and P,
> .. For questions where one option
dorminates the other, the terms “riskier” and
“safer” are not appropriate, so we assign p to
the dominating option, and g to the dominated
one. In such cases, it is always the case that
p: = ay and pg £ gp . but the inequality
involving py and g, can be of either direction,

fet U(x) be a von Neumann-Morgenstern
uiility function, normalised so that U(0) = §;
Uix,) = 1; and U(x3)} = u, with u>1. The value
u is a measure of the subject’s attitude-to-risk:
the higher u is, the more risk-loving the
subject. We find the expected utility of each
option:

EU) = pr +mu (1)

EU{g) = qi +qu (2}
Using (1) and (2} we see that the condition for
choosing the riskier option p can be writien
as;

d, +d,u>0 (3)
where dy = p, - qi and d; = pp - g, Clearly the
condition (3), as it stands, cannot be used for
our purposes, because i is deterministic.
However, il provides the basis for the
stochastic models developed in section 3.



3. Stochastic versions of EU theory

In what follows, we shall assume that the
sample consists of n subjects, each of whom
has been asked the same set of T questions.
1ety, = if subject i chooses p in response to
guestion t, and zero otherwise. Further, et dy,
and dy, be the probability differences, as in (3)
above, pertaining to question t.

There are various possibie ways of introducing
a stochastic element into the deterministic
model described in section 2. To iniroduce
these, it is helpful to imagine the choice
process being split into three stages. In the
“preference selection” stage, the subject
identifies her utility function at the present
moment in time. In the “computation” stage,
she uses that function to weigh the two
options. In the “action” stage, she “presses
the button” corresponding to the option judged
to have the higher expected utility.

Within our framework, there are three
different ways of introducing a stochastic
element, each corresponding to one of the
three stages outlined above. Firsi, there is the
possibility of introducing a degree of
randomness at the preference sclection stage,
by allowing u to be a random variable, with
range (I, o). This effectively implements the
random preference (RP) model, originally due
to Becker et al [1963], and recently
reconsidered by Loomes and Sugden {1997].

Our version of the RP model assumes the
following distribution for u:

in(u—1) - N(in{m - 1),07 )

o, =exp(o, +G,m). 4)
The parameter m is the median of u. The
higher a subject’s value of m, the further to

the right the distribution of u is, so the less
risk-averse, on average, that subject is,

We allow subjects to differ by assuming that
they ail have their own median attitude to risk,
my i=1l,..,n. The probability of subject i
choosing p on question tis:

1n——jﬂ—q+mmg—n
dll +d:’.l y.

Py, =1)=9
exp({si +(52mi)

&)

The log-likelihood function for estimating the
n+2 parameters can be constructed from (5).
A problem with the RP model is that it is
incapable of explaining violations of
dominance, and we shall return to this point.

The second possibility is 1o introduce
randomness at the computation stage. This
approach is similar to that of Hey and Orme
[1994], so we shall refer to this model as the
Hey-Orme (HO) model. Here, u is a fixed
parameter, which we aliow to differ between
subjects. Let u; be subject i’s value of u. We
add a stochastic ierm fo the difference of
expected utilities, so that the sabject i chooses
the riskier option p on question tif:

di+ dati+ 8 >0 &~ NO, o)

6= (u-D+0: (Ul (6)
where g, represents computational error. This
is assumed to have mean zero, implying that
mental computations are correct on average.
The purpose of the variance restriction in the
second iine of (6) is to guarantee that u; is
always greater than 1.

According to the HO model, the probability of
subject i choosing p on question t is:

P(yip—*l)xd{ i zjm
G (u; ~D+o,u, -1

The log-likelihood function for estimating the
n+2 parameters can be constructed from (7).
Note that since (7) is valid for both non-
dominance and dominance questions, this
model can be estimated using the complete
sample.

The third possibility is to introduce a degree of
randommness at the action stage. We can
assume that there is a small probability, @ say,
that the choice between the two options will be
made as if at random, whatever the outcome
of the computation stage. This parameter ®
may be interpreted as the probability that the
subject does not fully understand the guestion,
or alternatively as the probability that she is
not concentrating at the time of answering the
question. This assumption leads to a model
similar in spirit to that of Harless and
Camerer [1994),  Accordingly, we shall
henceforth refer to this model as the Harless-
Camerer {HC) model. This model is not
useful in its own right, but is very useful when
combined with the other models. It is to these
combinations that we now furn.

It was pointed out earlier that the RP model as
specified in (5) cannot explain violations of
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dominance. To deal with this problem, we
combine the RP model with the HC model.
We shall refer io the combined model as RP-
HC. Under this model, the probability of p
being chosen for the non-dominance questions
is:

Py, =)=
d,,
in{——m” ]+}n(mE -1}
dy, +d,, a -
(1-w)yp o
exp(c, +0,m;) 2
J
(8

For the dominance guestions, the probability
of p being chosen is simply:
w
Py, =l)=1-? (9

i

The log-likelihood function for RP-HC can be
constructed from (8) and (9). This model can
be estimated using the complete sample.

The other combination we shall consider is
HO and HC, whose likelihood function is
similarly constructed. We shall refer to this
combination as HO-HC.

We have used the subscripl t (o indicate
question number t.  However, the question
numbers, t=1,....T, have nothing to do with
the actual order in which the T questions were
asked. Every subject was asked the guestions
in a different order, which was determined
randomly, We therefore require an additional
variable, t’, which indicates the actual position
of the question in the ordering. ', is the time
when individual 1 was asked question t.

Knowiedge of t° is necessary in order 0
investigate the way in which parameters
change with experience. For example, if, with
experience, subjects become less likely to mis-
understand questions, the HC term, o, would
tend to fall as time progresses. To model this
effect, we replace @ by,
- exp(w, +o, 1) . (10)
1+exp(em, + ot

P

i

A negative value of the parameter w; would
indicate that the probability of
misundersianding decays as subjects hecome
more familiar with the choice task.

4. Rank dependernt (RD) EU theory

Loomes and Sugden [1997], analysing the
present dataset in a rather different way, find
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that apparent violations of EU occur in a
particular pattern. When g involves a zero
probability of the highest payoft, subjects tend
to be disproportionately likely to choose p
(which necessarily involves a positive
probability of the highest pay-off, unless the
question  involves dominance). This
phenomenon has come to be known as the
“hottorm-edge” effect, since an option with a
zero probability of the highest pay-oft is
jocated on the botiom edge of the Machina
triangle {see Loomes and Sugden, 1997}, One
way of allowing for this effect is by using a
“rank dependent” generalisation of EU -
henceforth RD - originally proposed by
Quiggin [1982].

The extent of the bottom edge effect is
represented by a parameter b, where Osb<lL.
When b=0, there is no bottom-edge effect, and
we have straightforward EU. Let us define
BE, to be a binary variable taking the value
one if guestion t is a botlom-edge question,
zero otherwise. The condition for choosing p
on question { can then be written [see Loomes
et al., 1997, for further detailsi:

blu-DBE, + (1-b)(d;; + dat) > 0. (11}

In section 3, we discussed the possible effect
of timefexperience, and described a method
for estimating any such effect on the
parameter ©. We now extend this method w0
the parameter b, by repiacing it with:

b, =byexpbtl} bo20;b <0 (12)

5. Data

The models developed in sections 3 and 4
have been estimated using pairwise choice
data from a sample of 92 subjects, randomised
between two subsamples of 46, Subjects 1
through 46 were presented with 90 pairwise
choices involving payoffs £0, £10 and £30,
while subjects 47 through 92 were presented
with 90 pairwise choices involving payoffs £0,
£10 and £20. Details of the experimental
design and procedure are given in Loomes and
Sugden [19971.

Of the 90 questions, 80 were non-dominance
and 10 involved dominance. The number of
times each subject chose p for non-dominance
questions are shown in parentheses in the
leftmost column of tabie 1.



6. Resulis

Three stochastic versions of EU have been
economeirically  estimated, using  the
MAXLIK routine in GAUSS. We always use
the BHHH algorithm [Berndt et al., 1974],
with analytic first derivatives. The three
stochastic models we have estimated are
straight  Hey-Orme  (HO), and iwwo
combinations: HO-HC and RP-HC. The three
stochastic models have been applied to both
EU and RD. EU and RD will be used as
subscripis to the acronyms of the various
stochastic specifications. So, for example, RP-
HCpp represents the random preference model
with a Harless-Camerer non-concentration
term, appiied to rtank-dependent expected
utility theory.

The results are shown in table i, although due
to space constraints they are incompleie.
Rows 1 through 46 of the results contain
estimates of u for subjects 47 through 92, or,
in the case of RP models, estimates of the
median of u. (The corresponding estimates
for subjects 1 through 46 are not shown).
This is an estimate of U(£20).  These
estimates secem sensible. They are all greater
than one, in accordance with monotonicity of
the utility function, which has been imposed
in estimation. The estimates are less than 2
for pearly all subjects, implying risk aversion.
In fact, most are close to one, implying a high
degree of risk aversion for most subjects. We
further note that the estimated standard errors
of these estimales arc usually smail, indicating
a high degree of precision in estimation. The
missing rows correspond to the subjects who
chose g every time, or nearly every time, for
whom there is insufficient variation of
response to allow estimation of attitude to risk.

"The most dramatic feature of the results is the
effect of time/experience on the Harless-
Camerer probability of non-concentration/
mis-understanding, embodied  in  the
parameter ¢). For reasons given later, the last
column of results, from RP-HCgp, is the
column which should be taken the most
seriously, so we use these resulis here, We see
from these results that this relationship is:

. exp(=2.327-0.01617)
Yl exp(-2327 - 0.016t))

(13)

(13) implies that ai the outset, when no
questions have been asked, the probability of

misundersianding is around 0.09. After 90
questions have been asked, however, this
probability has fallen to 0.02, The asymptotic
t-ratio associated with this time effect is
around -2.7, indicating strong significance.

‘We next consider the parameters of RD. Once
again focusing on the last column of results,
we see that the bottom-edge parameter b
decays over time according to:

b, = 0165exp(-0.006t7).  (14)

{14} implies that at time zero, parameter b is
0.165, indicating a strong bottom-edge effect,
However, after 90 questions have been asked,
the parameter b has decayed to 0.096.
Moreover, the effect of time has
overwhelming  significance, with  an
asymptotic t-ratio of -6.0.

Finally, we address the question of which of
the models we have estimated is best at
explaining the observed data. We can go
some way towards answering this guestion by
adopting the straightforward criterion of the
maximised log-likelihood. Where one model
is nested within another, we can apply a
straightforward likelihood ratio (LR) test. In
figure 1, single-pointed arrows represent
nested hypotheses, and the LR statistics are
shown. Each test is of two restrictions, so we
sec that all of the LR tests conducted result in
overwhelming rejections of the restrictions
under test, and therefore overwhelming
evidence in favour of the nesting model in
gach case. This means that both of the
generalisations 1o simple EU that we have
considered, the HC error probability and the
bottom-edge effect, have given rise to
significant increases in explanatory power.
There is therefore no doubt that the most
preferred model will be one that incorporates
both of these generalisations.

The guestion remains as to which is preferred
out of HO-HCgp and RP-HCgp. For the
purpose of this comparison, we make use of
Vuong's [1989] non-nested likelihood ratio
test [see Loomes et al., 1997, for details of the
application of this procedure]. This statistic,
Z, is standard normal under the null
hypothesis that the {wo models are equivalent.
The way we have constructed the statistic is
such that a significantly positive value of Z
provides evidence that the model based on RP
is closer to the true data generating process
than the one based on HO.

1308



Table 1: Results from stochastic versions of simple EU and Rank Dependent EU

Simple EU Rank Dependent EUJ
Subj. HO HO-HC RP-HC HO HO-HC RP-HC
47 (21 1.28¢0.04) 1.3§(0.04) 1.32(0.0%) 1.23(0.03) 1,.25(0.02) 1.27(0.03)
48 (18) 1.26¢0.03) 1.29(0.03) £.28(0.03) 1.21(0.02) 1.23(0.02) 1.24(0.03
49 (15) 1.23(0.03) 1.24(0.03) 1.23(0.05) 1.19{0.G2; 1.20¢0.02) 1.22(0.03)
50 (25) 1.32(0.05} 1.36(0.04) 1.40{0.06) 1.26{(0.03) 1.28(0.03; 1.31(0.03)
31 (42 1.7000.09} L65(0.07) 174309y 1.50{0.06) £ 48(0.04 1.51(0.06)
32 (30) L370.05) 1.41(0.05) 1.46¢0.07) 1.30(0.03) 1.32(0.04y 1.35{0.04)
53 (9 1.20{0.02) 1.21(0.03) 115(0.04; 117(0.02) 1.17(0.02) 1.15{0.03)
34 (15 1.25¢0.03) 1.25(0.03) 1.23(0.03) 1.20¢0.02) 1.20(0.02) 1.21{0.03)
35 () - - - - - -
36 (28) 1.4140.06) 1.44{0.05) 1.4600.07) 1.380.04) 1.33{(0.03) 1.34(0.04)
57 () B B - - - -
38 (12 1.28(0.0%) 1.20¢0.03) 1.19¢0.04) 1.2400.02) 1.17(0.02) 1.18(0.03)
59 (4) - - - . - -
6 {0) - - - - - -
61 (6) - - - - - -
62 (h 1.16(0.02) L17(0.0%) 1.110.04) 1.13(0.02) 1.15(0.02) £.14(0.03)
63 (M 1.19(0.02) 1.21(0.03} 1.£5(0.04) 1.15(0.02} 1.18(0.02) 1.16(0.03;
64 (O - - - - - -
65 (34) 1.40(0.05) 1.43(0.05) 1.54(0.073 1.32(0.04) 1.35(0.043 1.40{0.04)
66 (25) 1.40(0.06) 1.42(3.05) 1.40(0.06) 1.30(0.04) 1.29(0.03}) 1.30¢0.03)
67 {14) 1.22(0.03) 1.23(0.03) 1.2§(0.04) 1.18(0.02) 1.19(0.02) 1.20¢0.03)
68 {39} 1.68(0.09) 1.65{0.07) 1.68(0.09) 1.48(0.06) 1.46(0.04) 1.47¢0.05)
69 (27) 1.35¢0.05) 1.39(0.05) 1.440.07) 1.30(0.04) 1.29(0.03) 1.33(0.04)
70 (15} 1.36(0.04) 1.24¢6.03) 1.21(0.05) 1.29(0.03) 1.20¢0.02) 1.20(0.03)
71 (%) - - - - - -
72 (18) 1.26(0.03) 1.29(0.03) 1.28(0.05) 1.2100.02) 1.23(0.02) 1.24¢0.03)
73 (28) 1.34(0.04) 1.37(0.04) 1.42(0.06) 1.27(0.03) 1.30(6.03) 1.34¢0.04)
74 (&) 1.17(0.02) 1.18(0.02) 1.15(0.04) 1.14(0.62) 1.15(0.02) 1.14¢0.03)
75 (24 1.39(0.04) 1.32{0.04} 1.3740.06) 1.32(0.03) 1.25(0.02) £.29(0.03})
76 (30) 1.50(0.0%) 1.42(0.05} 1.45¢0.07) 1.40(0.04) E32(0.03) 1.35(0.04)
77 (59) 1.94(0.06) 2.01(0.14) 2.15(0.13) 1.77{0.06) 1.78(0.08} 1.91(0,12}
78 (48) 2.61(0.67 1.92(34.09) 1.92¢0.1 1 1.67(0.07) 1.61(0.06) 1.61{0.07)
79 (45) £.73(0.08) 1.69(0.07) 1.82(G.09) 1.55(0.06) 1.50(0.05) 1.56¢0.06)
80 (24) 1.33(0.04) 1.35(0.04) 1.37(0.66) 1.26(0.03) 1.28(0.03) 1.30¢0.03)
81 {1 1.21£0.03) L230.63) 1.23(0.04) 1.17(0.02) 1.19{0.02) 1.21(0.03)
82 (30) 1.47¢0.05) 1.39¢0.04) 1.45(0.06) 1.38(0.04) 1.31(0.0%) 1.35(0,04)
83 (28} 1.45(0.03) 1.39(0.06) 1.43(0.06) 1.35(0.04) 1.29(0.03) 1.33(0.04)
B84 (10 1.18(0.02) 1.2000.03) £.16(0.04) 1.15(0.02) 1.18(0.02) 1.17¢(0.03)
BS (11 1.20(0.02) 1.22(0.03) 1.18(0.04) £.16(0.02) {.19(0.02) 1. 18(0.03)
86 () - - - - - -
87 (1) - - - - - -
88 () - - - - - -
89 (39) 1.75(0.10) 1.69(0.07) 1.68(0.09) 1.56(0.06) 1.48(0.04) 1.46{0.05)
90 (3 - - - - - -
9: (21) 1.30(0.04) L3HG.04) 1.3H0.05) 1.24(0.03) 1.23(0.03) 1.26(0.03)
92 21 1.28(0.043 1.32(0.04) 1.33(:.06) 1.23(6.03) 1.25{0.02) 1.27(0.03)
v 0.387¢0.023)  0.2470.017) 0.390(0.238) 0.350(0.019) 0.3183(G.013; -0.572(0.285)
5 -0283(0.034)  -DU5%(0.023)  -0.412(0.148) -3.284(0.036) -0.1067(0.022) G.039(0.19D)
oy -LA29(0,220)  -1,768{0.282) -1.881(0.207) -2.327(0.278)
oy -0.018(0.005)  -0.031{0.010) -0.010(0.004) -0.016{0.006)
b 0.185{0.014) 0.17%(0.012) 0.165(0.012)
In -0.007(0.001) -0.605(0.0015 -G.006(0.001)
nobs 6660 6660 66640 6660 6660 6660
Logl. 36716 -2989.8 -2925.5 -2020.6 -2784,9 -2678.3

in leftmost column, parentheses contain the number of times p was chosen by each subject on non-
dominance guestions (maximum 80).
In other columns, parentheses contain asympiotic standard errors.
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HOxgy
Logl=-3071.6
LR=163.6
{a=2)
7. Z=+8.48
HO-HC gy &) i RP-HCgy;
Logi=-2989.8 Logle -2925.5
ER=400.8 LR=494 4
(q=2) g=2)
Z=+16.09
HO-HCap RP-HCep
Logl.=-2784.9 & MEogl=-2678.3

Figure 1: Nested and non-nested hypothesis
tests

In figure 1, double-pointed arrows indicate
non-nested tests. The important test is the one
that results in a Z-statistic of +16.09. This
provides overwhelming evidence that RP-
HCgrp is closer o the true data generating
process than HO-HCrp.

7. Conclusion

This paper has produced two insights in
particular which we think may be especially
useful and thought-provoking. Firstly, we
bave found convincing evidence that the
random preference framework provides the
best approach to forming a stochastic model
for pairwise choice. Although the randem
preference model in its simplest form cannot
be estimated in the presence of dominance
violations, a generalisation of it which allows
a small probability of “misunderstanding” has
been seen to perform considerably better than
a model which explains variation in terms of
computational error. This result has been
endorsed by a formal non-nested hypothesis
test.

The second main result concerns the effect of
timefexperience.  We found that the HC

misunderstanding term and the bottom-edge
parameter both decayed dramatically as
subjects gained experience. These resulis
imply that as they became more familiar with
the task, many subjects’ behaviour began to
correspond much more closely with
conventional EU Theory.
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